36th AAAI Conference on Artificial Intelligence, 2022

Differential Assessment of Black-Box AI Systems

Rashmeet Kaur Nayyar^{*}, Pulkit Verma^{*}, Siddharth Srivastava Arizona State University

How Would an End-User Assess an Adaptive AI System?

- AI systems should make it easy for its operators to learn how to use them safely.[†]
- How would we assess an AI system that can adapt its behavior?
- Much more challenging when the AI system is a black-box.

[†]Srivastava S. *Unifying Principles and Metrics for Safe and Assistive AI*. In Proc. AAAI 2021.

AAAI 2022 | Differential Assessment of Black-Box AI Systems | Rashmeet Kaur Nayyar*, Pulkit Verma*, Siddharth Srivastava

Will it be able to safely take my samples from the lab to the warehouse?

> I did not expect the truck to go from the lab to the warehouse via factory. What has changed?

Related Work

Related Approaches

Some approaches closely related to this work include:

- Learning models of agent behavior.
 - From passive observations. E.g., ARMS Yang et al. (AIJ 2007), LOCM Cresswell et al. (ICAPS 2009), FAMA Aineto et al. (AIJ 2019).
 - From active querying. E.g., AIA Verma et al. (AAAI 2021).
 - These approaches assume the model is stationary.
- Model maintenance and Model Reconciliation.
 - E.g., Marshal Bryce et al. (IJCAI 2016), MRP Chakraborti et al. (ICAPS)
 - They assume availability of updated model in STRIPS-like form.

STRIPS-like Modeling Language

Advantages

- Support interventions, assessment of causality
- Easy to convert into natural language text

Challenges

- Large space of possible models $(9^{|\mathbb{P}| \times |\mathbb{A}|})$
- P: variable-instantiated predicates
- A: parameterized actions

[Fully Observable, Deterministic]

Problem Overview

Key Challenges

Challenge 1

Challenge 1

Identifying what has changed given the observations

What can Change?

Any of these tuples could change their form:

- From + to –, e.g., (handempty) to (not(handempty))
- From to +, e.g., (not(handempty)) to (handempty)
- Can get dropped from precondition or effect.
- Another literal can get added as a precondition or effect.

Two broad categories

Increased Functionality

Observed that the agent executed move (lab, warehouse)

Reduced Functionality

No observation corresponding to this reduction

How do We Solve Challenge 1?

Identifying what has changed given the observations

Identifying Increased Functionality

Observation Traces

• "State -> Action -> State" tuples.

• New functionality detected easily.

Identifying Reduced Functionality

- Not a trivial problem to solve.
- Observations not available.

• Use notion of optimality to detect reduced functionality.

Predicting the Changes

 Combine knowledge of increased and reduced functionality to identify parts of model that may have changed.

Only some parts of action changed

• How do we identify their correct form?

Complete action changed

Challenge 2

Identifying how the model has changed given what has changed.

AAAI 2022 | Differential Assessment of Black-Box AI Systems | Rashmeet Kaur Nayyar*, Pulkit Verma*, Siddharth Srivastava

Query-Based Interaction

- We use a query-response mode of interaction with the agent.
- Helps identify how each of the tuple has changed.
- Query: $\langle s_I, \pi \rangle$ Initial State, Plan
- Response: $\langle \ell, s_F \rangle$

Length of plan that can be executed successfully and the final state.

(:action pick-sample	
:parameters (?s)	Ļ
:precondition (and (handempty)	n_1
<mark>(+/-/Ø)</mark> (onshelf ?s))	n_2
:effect (and <mark>(+/-/Ø)</mark> (handempty)	n_3
¬(onshelf ?s)))	n_4

Example Setting

Tuples

Algorithm for Hierarchical Query Synthesis

by reduction to planning[†].

n₂ n₃ n₄

 n_1

Pose the query to the agent

[†]Verma, P.; Marpally S. R.; and Srivastava, S. Asking the Right Questions: Learning Interpretable Action Models through Query Answering. In Proc. AAAI 2021.

AAAI 2022 | Differential Assessment of Black-Box AI Systems | Rashmeet Kaur Nayyar*, Pulkit Verma*, Siddharth Srivastava

Algorithm for Hierarchical Query Synthesis

(:action pick-sample	
:parameters (?s)	
:precondition (and (handempty)	n_1
<mark>(+/-/Ø)</mark> (onshelf ?s))	n_2
:effect (and (+/-/Ø) (handempty)	n_3
ㄱ(onshelf ?s)))	n_4

Check the consistency of M_A and M_C with the agent response

Algorithm for Hierarchical Query Synthesis

by reduction to planning[†].

(:action pick-sample	
:parameters (?s)	
:precondition (and (handempty)	n_1
<mark>(+/-/Ø)</mark> (onshelf ?s))	n_2
:effect (and (+/-/Ø) (handempty)	n_3
¬(onshelf ?s)))	n_4

[†]Verma, P.; Marpally S. R.; and Srivastava, S. Asking the Right Questions: Learning Interpretable Action Models through Query Answering. In Proc. AAAI 2021.

AAAI 2022 | Differential Assessment of Black-Box AI Systems | Rashmeet Kaur Nayyar*, Pulkit Verma*, Siddharth Srivastava

Empirical Evaluation

Experimental Setup

- Randomly generate initially known agents using IPC benchmark suite.
- Use 10 initial observations (state-action-state pairs) for unknown drifted IPC agent generated using IPC problems.
- Using previous model and available observations, predict what may have changed.
- Learn the updated model by querying for changed portions of the model.
- Evaluate performance of the assessment module and compare it with the vanilla active querying approach of assessing model from scratch.

Results

Number of queries Accuracy of initial model ----Accuracy gained _ . _

Accuracy of model computed by DAAISy

Results: Number of Queries

Domain	Max Tuples [#]	ΑΙΑ	DAAISy
Gripper	20	15.0	6.5
Miconic	36	32.0	7.7
Satellite	50	34.0	9.0
Blocksworld	52	40.0	11.4
Termes	134	115.0	27.0
Rovers	402	316.0	61.0

[#]Max Tuples is the upper bound on number of tuples in the domain.

The average number of queries to achieve same level of accuracy for 50% drifted models

- Results with FD planner with LM-Cut.
- Our approach, DAAISy, takes up to five times lesser queries than reassessment from scratch using AIA.
- Reassessment from scratch using other passive learning methods would take even longer.

Key Takeaways

- A novel method for differential assessment of black-box AI systems that have drifted from their previously known functionality.
- Able to learn highly accurate models of functionality of agents issuing a significantly lower number of queries as opposed to relearning from scratch.

verma.pulkit@asu.edu

 Plan to extend the framework to more general classes, stochastic settings, and models.

