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Abstract

Speech recognition refers to the techniques that are used to analyze the speech signals

so as to make sense out of them. A considerable amount of work has been done in this

area and a lot of different approaches have been proposed. Despite all this, the size

of speech data is still considered a major bottleneck in analysis of speech signals. One

of the major drawbacks of large amounts of data is the performance impact of speech

processing applications on low resource devices like mobile phones, tablets, etc.

Resource usage is an important factor into consideration while developing speaker recog-

nition applications for mobile devices. Sometimes usage parameters are considered as

important as accuracy of such systems. In this work, an analysis of resource utilization in

terms of power consumption, memory and space requirements of three standard speaker

recognition techniques, viz. GMM-UBM framework, Joint Factor Analysis and i-vectors

is presented.

The experiments are performed on the MIT MDSVC corpus using Energy Measurement

Library (EML). It is found that though i-vector approach requires more storage space,

it is better than the other two in terms of memory and power consumption, the two

important factors for software performance in present times.

Keywords: GMM, UBM, JFA, i-vectors, speaker recognition, resource usage, power

consumption
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Chapter 1

Introduction

Speech recognition is the process of identifying the text equivalent of spoken sentence
through a machine. A major issue in speech recognition by a machine is no two speech
utterances are identical even if the spoken utterances are same. In other words we may
say that speech data (speech samples) is highly variable, random and ambiguous in
nature.

The work on recognizing speech has been in constant progress since it was first envisioned.
A number of methods have been proposed and implemented for the same. But still any
such system requires a large amount of training data to function with acceptable accuracy.
This consumes a lot of resources. Also the real time recognition of speech is many times
not possible pertaining to various resource constraints.

Increasing number of people now-a-days possess mobile phones with capabilities of sup-
porting speech recognition applications. The real challenge however is to make the speech
applications less resource hungry so that they can be practically used.

Memory and secondary storage space has been the standard parameters taken into con-
sideration whenever resource usage of any software is considered. But in the current
scenario with number of mobile devices working on temporary power sources like bat-
teries increasing in exponential numbers, power consumption of devices is becoming an
equally important factor for considering the performance of applications.

This thesis explores the resource utilization in terms of power, memory and secondary
storage space requirements of the state of the art speech recognition techniques. This
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Chapter1: Introduction 2

exploration is limited to the probabilistic model based techniques like the GMM-UBM
approach, Joint Factor Analysis and Front End Factor Analysis.

We first find the best configuration of each method by changing the scoring and nor-
malization method. Then once the best performing combination of each technique is
obtained they are all compared with each other.

The rest of this thesis is organized as follows: Chapter 2 will review some of the basic
concepts related to speech recognition, after which Chapter 3 will introduce the three
methods which are to be compared with each other. The concept of measuring the re-
source usage will be introduced in Chapter 4. Chapter 5 will explain the experimentation
process and analysis of results obtained will be done. Finally, Chapter 6 concludes this
thesis with summary and possible works that can be taken up in future.



Chapter 2

Background

This chapter layouts the groundwork for understanding the work presented in this

thesis. After a brief introduction to the related works that have been proposed over time,

a short explanation of typical speech recognition systems will be given.

2.1 Literature Survey

Gaussian Mixture Model (GMM) based speaker verification approach was proposed by

Reynolds [28] a long time back, it remained very popular in the form of GMM-UBM

framework. It was modified so as to take into account the inter-speaker (speaker) vari-

ability and intra-speaker (channel) variability in the modeling process. This approach

was termed as Joint Factor Analysis (JFA) [18, 19].

JFA considers that these variabilities are independent of each other. But it was later

found out that channel variabilities were also modeling the inter-speaker variations [9].

Dehak et. al. [11] resolved this issue by proposing a channel-blind approach where speaker

and channel variabilities are modeled together in a low dimensional total variability space.

The vectors represented in this space are called i-vectors. This has become the latest

state of the art approach because of its low complexity and better performance.

Calculating the power consumption of a software was first proposed for embedded soft-

ware [31]. Making such systems useful for application software is very tricky and many

methods have been developed but very few of them are actually useful. A review of

3
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Figure 2.1: Flowchart for a generic Speaker Recognition Process

energy consumption of software libraries was given in [24] and [25]. PowerAPI [2] and

Energy Measurement Library (EML) [8] are some of the methods which successful im-

plementations solving this problem.

In this thesis, a comparative study of power, memory and storage space consumption of

GMM-UBM framework, JFA and i-vector approach in the domain of speaker recognition

is presented.

2.2 Generic Approach

The general framework of any speech recognition application can be explained using

a speaker verification system as shown in Figure 2.1. Applying it to any other domain

requires changing the suitable parameters while giving speech data as input to the system.

This generic approach can be subdivided into two main steps, speaker enrollment and

speaker verification.

During the speaker enrollment process, a background model is generated using the data

collected from non-target utterances. In this paper, for nearly all the approaches this

model will be Universal Background Model (UBM). Using this background model, a

target model is generated using the target utterances by adapting the background model

according to the target data. Now this target model will act as the single point of

reference for the pattern recognition algorithms. Whenever any test utterance is given
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as input to the system, features are extracted from it and pattern matching algorithms

are applied on it using one or more kinds of target models. The resultant similarity score

is then normalized and final decision is taken after applying some decision logic to this

normalized score.

2.3 Feature Extraction

An important aspect of using any of the techniques used in speech recognition applica-

tions is the feature extraction step. The features used for this purpose must fulfill some

criteria so as to give better performance. According to Wolf [35], some of the important

characteristics of these feature vectors are that they should:

• be less susceptible to environmental noise

• occur frequently and naturally in normal speech

• not be affected by health of the speaker

• be easily measurable

• be difficult to copy by impostors

Due to these reasons generally MFCCs (Mel-frequency cepstral coefficients) [4] are used

as feature vectors for speech recognition applications. A simple flowchart depicting the

MFCC extraction process is depicted in Figure 2.2.





Chapter 3

Factor Analysis Techniques

This chapter outlines the factor analysis techniques used in speech recognition ap-

plications. The main concept behind this approach is to project the higher dimensional

feature vectors on a low dimensional space where it is represented by factors. Each factor

analysis method differs from each other depending on which combination of features is

projected on lower dimensional space.

This chapter will also explain the basic three methods compared for resource consumption

in this work.

3.1 The GMM-UBM Approach

This is one of the most commonly used approach for speech recognition tasks. The

framework is similar to the generic speaker recognition method explained earlier. Here

Estimation Maximization (EM) algorithm is used as the training algorithm and Universal

Background Model (UBM) acts as the background model. Maximum A Posteriori (MAP)

is used to adapt the UBM to generate the target models. Figure 3.1 gives the flowchart

for the working of this framework.

7
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3.1.1 Gaussiam Mixture Model (GMM)

A Gaussian mixture model [26] is a weighted sum of M component Gaussian densities

as given by the equation,

p(x |λ) =
M∑

i=1
wi g(x |µi ,Σi ) (3.1)

where,

x is a D-dimensional continuous-valued data vector (i.e. measurement or features);

wi , i =1, ...,M , are the mixture weights; and

g(x |µi ,Σi ), i = 1, ...,M , are the component Gaussian densities.

It should be noted that the mixture weights are such that
∑

i wi = 1 and each component

densities is a D-variate Gaussian function of the form,

g(x |µi ,Σi ) =
1

(2π)
F
2 |Σc |

1
2

exp
{

–
1
2
(x – µi )

′
Σ–1

i (x – µi )
}

(3.2)

with mean vector µi and covariance matrix Σi .

The complete Gaussian mixture model is parameterized by three parameters:

• Mean vectors,

• Covariance matrices, and

• Mixture weights from all component densities.
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These parameters are collectively represented by the notation,

λ = {wi ,µi ,Σi}, i =1, ...,M (3.3)

If training vectors/data and GMM configuration is known, next step is to estimate λ,

such that it resembles the distribution of training features. Various techniques to achieve

this are already present [23]. The most popular method is maximum likelihood (ML) esti-

mation. The estimates of ML parameters are calculated using expectation-maximization

(EM) algorithm [13].

GMMs are very popular in Speech Processing Systems since they can model a large

class of speech characteristics. Even for arbitrary component densities the model gives

a good approximation. The model is also capable of modeling the hidden characteristics

of speech data generated by various phonetic entities like vocal cords, voice tract, etc.

During implementation, GMMs are used to grab the distribution of MFCCs in the feature

space. It is assumed that given these feature vectors u = y1 , y2 , y3 , ...yL are independent

of each other. Hence the probability of a given utterance u given the model λ is simply

the product of each L frames. Since L could be large and probabilities are less than or

equal to 1, such a large product may lead to underflow. So log likelihood is used in the

computations as follows:

log p(u|λ) =
L∑

i=1
log p(yt ,λ) (3.4)

3.1.2 Estimation Maximization

The Estimation Maximization (EM) algorithm can be used to estimate the maximum

likelihood (ML) parameters of a model λ for a set of training vectors. The EM algorithm

refines the parameters of GMM iteratively. The likelihood of the estimated model for

the observed feature values increases by this refinement.

3.1.3 Universal Background Model (UBM)

Universal Background Model (UBM) [27] represents a general speaker independent model

which is actually a UBM model trained on very large amount of speech data. It models

the speaker independent feature distribution. Hence this model is expected to contain

the features of any utterance on which system is tested.

To estimate the GMM parameters (λ), Maximum A Posteriori (MAP) Parameter Esti-

mation algorithm [1] is generally used. This estimation algorithm is generally used when
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a general model is adapted using very limited training data. Still the choice of method

to estimate the parameters varies from implementation to implementation.

3.1.4 MAP Adaptation

The next logical step is to generate the models for all the classes for which the recognition

task is to take place. Hence in speaker recognition task the aim is to generate models for

each speaker. EM algorithm cannot be applied here as data for each speaker is expected

to be small and may not be representative of that speaker’s speech features. Also by

using EM channel characteristics might be modeled within speaker models.

The solution to this problem is to use UBM itself to generate the speaker models. Hence

the well trained parameters from UBM are updated using maximum a posteriori (MAP)

adaptation. The implementation of MAP is similar to EM, but Baum Welch statistics

[Appendix A] are used here to updated the UBM. Figure 3.2 depicts an exmple where

MAP is used to adapt UBM based on speaker features to generate the speaker models.

3.2 Joint Factor Analysis

3.2.1 Methodology

In Joint Factor Analysis [19–21], a supervector M is used to represent any speech utter-

ance. M contains speaker and channel dependent supervectors.
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Let C be the number of components in UBM and F be the dimension of acoustic feature

vectors.

Now for a given utterance, we concatenate the F-dimensional GMM mean vectors to get

the supervectors of dimension CF. For a particular speaker, we assume that the speaker

and channel dependent supervector M is generated by the vector sum of speaker depen-

dent supervector and channel dependent supervector. Also these speaker and channel

supervectors are distributed normally and are statistically independent.

M = s + c (3.5)

where,

M is speaker and channel dependent supervector;

s is speaker dependent supervector;

c is channel dependent supervector.

Both the speaker and channel factors are decomposed into low dimensional set of factors.

Each of these low dimensional factors operate along the principal dimensions of the

corresponding component.
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We assume that the distribution of speaker dependent supervector s has a hidden variable

description of the form:

s = m + Vy + Dz (3.6)

where,

s is speaker dependent supervector;

m is CF × 1 speaker and channel independent supervector (from UBM);

V is eigenvoice matrix (rectangular matrix of low rank);

D is CF × CF residual diagonal matrix;

y is a vector representing speaker factors;

z is a normally distributed CF dimensional random vector representing speaker

specific residual factors.

The decomposition of a factor into lower dimensional factors can be illustrated by the

following decomposition of speaker dependent component of speaker factor:

V ∗ y =


| | |

v1 v2 ... vN

| | |

 ∗



y1

y2

.

.

yN


(3.7)

where,

V is eigenvoice matrix;

y is lower dimensional vector representing speaker (or eigenvoice) factors.

Each speaker factor yi controls corresponding vi.

We assume that the distribution of channel dependent supervector c has a hidden variable

description of the form:

c = Ux (3.8)

where,

c is channel dependent supervector;

U is eigenchannel matrix (matrix of low rank);

x is a normally distributed random vector representing channel factors.

With each mixture component i, a diagonal covariance matrix Σi is associated. The

variability in acoustic observation vectors is not modeled by either (3.5) or (3.8).

We now define a CF × CF super-covariance matrix Σ whose diagonal is obtained by

concatenating all the covariance matrix Σi. The variability that is not modeled by s and

c is modeled by Σ.
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3.2.2 Working

Once the MFCCs for all utterances in the training set are extracted, Estimation Max-

imization is applied to generate the Universal Background Model (UBM). JFA hyper-

parameters are also extracted as explained in Kenny [18]. For the Target dataset, once

the MFCCs are extracted, zeroth and first order Baum-Welch statistics are extracted.

Now using the JFA hyper-parameters extracted earlier adaptation is done on the data

to generate the target model.

For performing the recognition of any test utterance, MFCCs are extracted followed

by computation of the Baum-Welch statistics. Now using the target model and these

statistics values the log likelihood is calculated for each speaker. The maximum value is

chosen as the recognized speaker. Figure 3.4 explains this process in detail.

It should be noted that log likelihood calculation is not the only scoring method used

with JFA and its choice may vary across applications. Various such scoring methods

used with JFA for speaker recognition are compared in Glembek et al. [15]. It is deduced

that though the performance of the various techniques does not vary significantly, the

real difference comes in the speed of scoring. Linear scoring is found to be fastest of all

the scoring techniques as the channel compensation is calculated only once per speech

utterance.

The various algorithms and detailed description of Joint Factor Analysis can be found

in Kenny [18].
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3.3 Front End Factor Analysis

In JFA it is assumed that the channel factors will only model the channel effects, but

it was observed by Dehak [9] that the channel dependent supervector also models the

speaker features. To take this finding into account, a new approach was proposed where

there was no distinction between channel and speaker variabilities.

A new low dimensional total variability space T was introduced to account for both the

variabilities, where M is given by:

M = m + Tx (3.9)

where,

m is the UBM supervector (speaker and channel independent supervector);

x is a normally distributed random vector in this space; and

T is a low ranked rectangular matrix.

The factors of x are also called as total factors. The new vectors are known as identity

vectors or i-vectors.

In this approach, it is assumed that M is distributed normally with TT′ as its covariance

matrix and m as its mean vector. Here total variability matrix T is obtained in the

same manner as that of V, but it is assumed that the utterances of the same speaker are

produced by different speakers unlike in the process of training eigenvoice matrix V.

In order to bring down computation, the channel compensation is done in total factor

space as the dimensionality of i-vectors is lower as compared to GMM supervectors.

Hence the computation cost is much less as compared to JFA.

One of the additional advantage of this approach is that supervised training is not needed

in this model unlike JFA and GMM-UBM.

3.4 Parameter Training

While training the total variability matrix T, it is assumed that each utterance of the

training set belongs to a different speaker, unlike JFA where all recordings from a same

person are assumed to be generated from the same speaker.

The posterior distribution of w can be determined using Baum Welch Statistics [Ap-

pendix A] from the UBM [11].
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Figure 3.5: Flowchart for channel blind i-vector based approach [12]

3.5 Channel Blind Approach

Most of the speaker recognition systems are trained on either telephone speech or micro-

phone speech. Dehak et al. [10] proposed a channel-blind system which is conditioned

on both telephone and microphone speech. To project both types of data on same space,

PLDA was used. And for the hyper-parameter training, first µ, V and Σ were trained on

telephone data assuming U = 0 (EM algorithm was used). Then U was trained on mi-

crophone data assuming µ, V and Σ are fixed (Maximum a posteriori probability (MAP)

estimate was used). This approach is explained in detail in Figure 3.5. This is the general

template for nearly all the approaches that involve i-vectors. In the literature, there are

reported works [1, 14] where efficient computations of i-vectors are presented. There are

several other variations of this general approach which are listed below:

1. Using different features instead of MFCCs.

2. Using different feature or score normalization technique instead of PLDA, LDA

and WCCN.

3. Modifying the statistics calculation.

4. Using different scoring technique instead of Cosine Distance scoring.

5. Changing some inherent assumption of Front End Factor Analysis.

All these methods try to alter the standard approach so as to improve certain aspects of

the recognition system.
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3.6 Discussion

In this chapter, a concise overview of various speech recognition methods that uses proba-

bilistic models was presented. The recognition performance of these methods vary across

the domains. Some of them are highly domain or problem specific and generally perform

well in ideal laboratory environments. The main challenges are found to be the paucity

of training data, choice of training data, length of utterances, background/environmental

noise, emotional state of speaker, etc. Hence most of the methods fail when tested in

real life environments. Though some of the methods looks highly promising, much work

needs to be done in coming up with a generic method that is suitable to tackle all the

challenges mentioned. Another important criteria for use of i-vectors is the execution

time of the recognition process. Though some methods might give very good perfor-

mance, if the running time on real data is high, they may render the application useless

for most practical situations.



Chapter 4

Resource Utilization Measurement

This chapter outlines the resource measurement strategies used in this work. The

resource measurement is done in terms of three parameters, viz, power, memory and

secondary space. These parameters give a good outline of the application performance

in terms of its usability. This becomes more important in current times when mobile

devices users have increased in exponential numbers.

4.1 Power Measurement

We have used Energy Measurement Library (EML) [8] to measure the power requirements

of the various approaches. It acts as a middleware between code for measuring power

consumption and hardware based measurement tools. Single multi-core Intel® Xeon®

CPU was used for the experiments. EML also provides abstracted interface to simplify

data collection and representation. It is currently available for a limited number of

hardware.

4.1.1 Energy Measurement Library

EML provides easy measurement of energy consumption of software systems. The options

to speed up the measurement are also available. It abstracts the measurement process

from the software hence relieving the developers to take care of measurements on various

architectures and remember to avoid clashes with the interfaces for measurement.

17
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Power Distribution
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Figure 4.1: EML structure diagram overview [8]

EML uses Performance API (PAPI) [5] to get the power readings via RAPL register

interfaces directly.

The programming interface provided to the source codes for instruments is given in an

unified form. A configuration file is needed to initialize the measurement tool. When the

object for measurement tool m is added a timestamp t(m)init is saved. Hence after the

measurement calls when the results are returned the corresponding timestamp t(m)curr

is also returned. This data along with other metadata can be configured to be saved in

JSON format.

The power measurement support provided by EML is for three kinds of devices currently:

1. Intel CPUs:

(a) Intel CPUs Sandy Bridge and later: Data from these devices is collected

via Intel RAPL MSR (Model Specific Registers) interface for the Intel Xeon

family.

(b) Intel Xeon Phi: Data from these device is read via Intel MPSS 3.x (Many

Platform Software Stack)

2. Nvidia Fermi and Kepler cards: Data is read via NVML (Nvidia Measurement

Library).

3. Metered Power Distribution Units (PDU): The support is currently only for a stan-

dard APC metered PDU and a custom Schleifenbauer PDU. The data collection is

also limited for this as data can only be collected at intervals of about 2-3 seconds.
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4.2 Memory Measurement

For the memory requirements of the applications, we have calculated the resident set

size (RSS) portion of the memory as it is the actual amount of memory that is occupied

by the process in main memory. We have used pmap utility available in UNIX based

operating systems for this purpose.

4.2.1 pmap Utility

pmap gives the following memory information related to each map of memory map of a

process:

1. Start address of the map.

2. Map size in kilobytes.

3. Resident Set Size in kilobytes.

4. Dirty pages (both shared and private) in kilobytes.

5. Read, write, execute, shared and private (copy on write) permission on map

6. Mapping type. It can be either (1) a file name; (2) [ anon ] for allocated memory;

or (3) [ stack ] for program stack.

7. Offset of map into the file

8. Device name

Since we only require the resident set size for the measurement purposes, we extract that

value from all the maps and sum them to get the total RSS at that instant. This total

RSS value is calculated at fixed intervals.

4.3 Space Measurement

For the space requirements we have calculated the amount of space occupied by the

executables on the secondary disk. ls command was used for this purpose.





Chapter 5

Comparing Resource Usage

This chapter outlines the experiments performed to calculate and compare the re-

source usage of the various speaker recognition strategies. The platform specification

and the data/corpus on which the experiments are performed are also given.

5.1 Corpus

In this work, the MIT Mobile Device Speaker Verification Corpus (MDSVC) [36] was

used which is aimed at supporting speaker verification research using mobile devices. The

recording was done using microphones and internal headsets in different environments

to generate multi-style trained models. Since the data was collected over 2 sessions it

contains inter-session variability as well.

The corpus has enrolled data of 48 speakers out of whom 26 were male and 22 were

female. A total of 54 recordings per person were carried in each session. Hence over

2 sessions, 5,184 recordings were collected for enrolled users. Imposter data was also

recorded which consisted of 40 speakers, out of which 23 were male and 17 female.

The text being read consisted of names and ice cream flavor phrases, hence the average

length of each recording is about 2 seconds which makes the training and recognition

task a bit difficult. Since the amount of data is also quite less, it adds to the difficulty

of recognition.

21
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5.2 Platform

The output of power requirements vary across systems and might change drastically if

the measurement platform is changed. But the relative power requirements of different

process generally does not change.

The system used for the experiments has the following specifications:

• 1 x Intel® Xeon® CPU E5530 @ 2.40GHz

• 16 Cores

• 48 MB L3 Cache

• 32 GB RAM
• gcc 4.1.2

• Intel® MSR RAPL interface

• Intel® MPSS 3.4.2

5.3 Toolkit

For the speaker recognition techniques, program development was based on ALIZE 3.0

[22] toolkit. This was to ensure that standard code-base is used for the experiments. The

configuration parameters that can be set for using this toolkit can be found in Appendix

B.

5.4 Gaussian Mixture Models

Three different scoring methods have been used with Gaussian Mixture Models and the

resource usage is calculated and compared. The three scoring methods are:

1. Z-norm: Z-norm or Zero normalization compensates for inter-speaker score varia-

tion. The normalization statistics for it are calculated offline. It allows to use a

global speaker independent decision threshold. Normalization score for Z-norm is

given by,

LLR(Ytest ,S )norm =
LLR(Ytest ,S ) – µ(S )

σ(s)
(5.1)

where,

LLR is log likelihood ratio;

Ytest is the test utterance;

S is the claimed speaker; and



Chapter 5: Comparing Resource Usage 23

µ,σ are the normalization statistics.

For estimating the normalization statistics, a set of impostor trials are scored

against the target model and the mean and the standard deviation of the scores

are computed.

2. T-norm: T-norm or Test normalization compensates for inter-session score valida-

tion.The normalization statistics for it are calculated online. It attempts to reduce

the overlap between impostor and true score distributions of each client-speaker.

Normalization score for T-norm is given by,

LLR(Ytest ,S )norm =
LLR(Ytest ,S ) – µ(Ytest )

σ(Ytest )
(5.2)

where,

LLR is log likelihood ratio;

Ytest is the test utterance;

S is the claimed speaker; and

µ,σ are the normalization statistics.

3. ZT-norm: Zero-dependent test-score normalization (ZT-norm) [37] has been used

in GMM-UBM approach and JFA approach. In this technique T-norm of each

test utterance is calculated against each impostor model. These scores are further

normalized by applying Z-norm to get the output of ZT-norm. Here it should be

noted that Z-norm are calculated by scoring each target speaker model with each

impostor utterance.

The graph in Figure 5.1a shows the variation of memory usage with time for the various

scoring techniques used with GMM. It can be clearly seen that ZT-norm takes less

time compared to the other two methods to complete its execution. Also its memory

map is much smaller in size, which makes it the best suitable normalization and scoring

technique out of the ones which were tested. Figure 5.1b depicts the comparison of power

and space in graphical form.

5.5 Joint Factor Analysis

Joint Factor Analysis was used with dot product metric to normalize the scores. Due to

the complexity of the JFA, only one scoring method was used with JFA. Dot product



24 Chapter 5 Comparing Resource Usage

Table 5.1: Resource consumption for different scoring methods when used with GMM-
UBM approach for speaker recognition

Approach Memory Consumption (MB) Energy Space Time

Average Maximum (W.h) (KB) (sec)

Z-norm 1325.7 1367 0.40 932 11.05

T-norm 1294.4 1325 0.37 1006 9.30

ZT-norm 1299.6 1310 0.36 1013 8.65
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Figure 5.1: Resource consumption for different scoring methods when used with
GMM-UBM approach for speaker recognition
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Table 5.2: Resource consumption for dot scoring method when used with Joint Factor
Analysis for speaker recognition

Approach Memory Consumption (MB) Energy Space Time

Average Maximum (W.h) (KB) (sec)

Dot Scoring 1292 1488 0.36 1034 6.45

metric is given by,

Score(Ytest ,S ) = Y
′
test .S (5.3)

where,

Ytest is the test utterance; and

S is the claimed speaker.

Figures 5.2a and 5.2b depicts the resource consumption for Joint Factor Analysis when

used with dot product scoring technique. Table 5.2 also depicts the same data.

5.6 i-vectors

Four different scoring methods have been used with i-vectors and the resource usage is

calculated and compared. The three scoring methods are:

1. MD + EFR: It is Mahanalobis Distance scoring along with Eigen Factor Radial

(EFR) [3] normalization. Mahanalobis based scoring function for speaker detection

is given as,

Score(Ytest ,S ) = (Ytest – S )
′
W –1 (Ytest – S ) (5.4)

where,

Ytest is the test utterance;

S is the claimed speaker; and

W is the covariance matrix computed on the EFR normalized i-vectors.

2. CS + WCCN: It is Cosine Similarity when used with Within Class Covariance

Normalization (WCCN). Cosine similarity for speaker recognition is given as,

Score(Ytest ,S ) =
(Ytest )

′
S

||Ytest||.||S||
(5.5)

where,

Ytest is the test utterance; and

S is the claimed speaker.
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3. PLDA: Probabilistic Linear Discriminant Analysis (PLDA) [17] has been used

for similarity scoring in the i-vector approach. Given two i-vectors x1 and x2 ,

the PLDA score measures the log-likelihood ratio between the two hypotheses

{H0 ,H1 }, where H0 hypotheses that x1 and x2 belong to the same speaker while

H1 hypotheses otherwise. The score is given as:

score = log(p(x1 , x2 |H0 )) – log(p(x1 , x2 |H1 )) (5.6)

This can be explained by the fact that if the i-vectors belong to the same speaker

then their latent variables will be same, otherwise they will be different. The

solution to (5.6) can be found in [17]. For normalization standard Length Nor-

malization is used prior to applying PLDA.

4. 2-Covariance Scoring: The two-covariance model can be seen as particular case of

PLDA. Let an i-vector w of a speaker s be decomposed as,

w = ys + ϵ (5.7)

where, ys is the speaker model of same dimension as w , ϵ is the Gaussian noise,

and

P(ys) = N (µ,B) (5.8)

P(w |ys) = N (ys ,W ) (5.9)

where,

N represents normal distribution;

µ is training dataset mean;

B is between-speaker covariance matrix; and

B is within-speaker covariance matrix.

Now according to assumptions 5.8 and 5.9, the score given in 5.6 can be redefined

as,

score =
∫
N (w1 |y ,W )N (w2 |y ,W )N (y |µ,B) dy∏

i–1 ,2
∫
N (wi |y ,W )N (y |µ,B) dy

(5.10)

The complete solution of equation 5.10 can be found in [6].

Figure 5.3a shows the memory consumption of i-vector based methods. Though the

power consumption gain from PLDA method is not much as can be seen from 5.3, the

speed of execution and memory requirements clearly show that PLDA is better than the

other three methods in terms of resource usage.
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Table 5.3: Resource consumption for different scoring methods when used with i-
vectors for speaker recognition

Approach Memory Consumption (MB) Energy Space Time

Average Maximum (W.h) (KB) (sec)

MD + EFR 1306.2 1459 0.39 2805 4.40

2-Covariance 1256.2 1437 0.37 2849 4.10

CS + WCCN 1203.4 1321 0.34 2487 3.60

PLDA 1106 1284 0.34 3369 2.95
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Figure 5.3: Resource consumption for different scoring methods when used with i-
vectors for speaker recognition
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Table 5.4: Resource consumption for GMM-UBM, JFA and i-vector approaches for
speaker recognition

Approach Memory Consumption (MB) Energy Space Time

Average Maximum (W.h) (KB) (sec)

GMM-UBM 1291.5 1310 0.36 1013 8.65

JFA 1292 1488 0.36 1034 6.45

i-vectors 1106 1284 0.34 3369 2.95

5.7 Comparison of Methods

The graph in Figure 5.4a shows the variation of memory usage with time. It can be

clearly seen that i-vector approach is much faster as compared to the JFA and GMM-

UBM approach. Also the memory requirements are relatively lesser than the other

two. The maximum and average memory used during the experiment is also reported in

Table 5.5.

It should be noted that EML gives better results on parallelizable programs. JFA and

GMM-UBM approaches implemented in the experiments do not have any preprocessing

to be done, whereas in the i-vector approach normalization was done prior to actual

scoring. Hence the results for i-vector approach might be improved if power consumption

calculation is done without any parallelization.

The space requirements of the approaches keep increasing as we move from GMM-UBM

to i-vector owing to the large code size and complexity for i-vector calculation leading to

larger executables.

5.8 Accuracy Comparison

Other than resource consumption, accuracy of the different methods proposed in this

chapter are to be considered before drawing any final conclusion. The accuracy of the

methods based on various datasets is summarized in Table 5.5. The accuracies are

calculated as the percentage of speakers the method is able to identify accurately. The

inaccuracies are reported when the confidence values generated after the scoring step are

within 2% of each other for multiple speakers. Hence in such a case the method cannot

tell the test utterance is associated with which recording with sufficient confidence.

From the data it can be seen that i-vector-PLDA method performs better than others in

terms of accuracy as expected. Only i-vector-CMS methods gives comparable accuracy,

but owing to its large resource usage i-vector-PLDA method must be preferred.
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Table 5.5: Accuracy for GMM-UBM, JFA and i-vector approaches for speaker recog-
nition with different scoring techniques using The MIT MDSVC Corpus

Recognition Technique Accuracy (%)

GMM + T norm 87.50

GMM + Z norm 87.50

GMM + ZT norm 89.58

JFA + Dot scoring 93.75

i-vector + MD + EFR 91.67

i-vector + 2-Covariance 97.91

i-vector + CS + WCCN 95.83

i-vector + PLDA 97.91

5.9 Discussion

On the basis of these experiments we observed that the i-vector approach performs

significantly better in terms of speed. The power consumption of all 3 approaches is

comparable with i-vector approach performing slightly better. The i-vector technique

also exhibit slight optimality in terms of accuracy and memory consumption but due to

its large code-base it uses the maximum space to the order of thrice the space used by

the other 2 methods.





Chapter 6

Conclusion

In this work, a comparison of the current state of the art techniques in terms of their

resource utilization targeted towards speaker recognition is conducted. Experiments were

performed on a standard corpus collected using mobile devices in a noisy environment.

This dataset emulates the data likely to be encountered in real life environments. The

algorithms tested using this dataset reflects the true nature of performance in actual

situations.

The results show that the i-vector approach is more efficient in terms of memory us-

age and power consumption, which are the major focus areas for today’s computing

environments. Specifically in case of mobile applications, these two factors can play an

important role in the success and usability of such software. Even in terms of running

time the i-vector approach outperforms the other two approaches.

The current work only analyzes the resource usage on laptops and desktops in the lab

environment. This can be extended to mobile devices in future to get more specific

readings for various mobile platforms.

Future enhancements to this work include incorporating these experiments on heteroge-

neous operating systems like Android™, Windows® Phone, etc. as well as experimenting

with different sized feature vectors for all these speaker recognition approaches.
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Appendix A

Baum Welch Statistics

Given an speaker s and feature vectors Y1 ,Y2 , . . . . For each mixture component c, the
Baum-Welch Statistics is defined as:

Nc(s) =
∑
t

γt (c) (A.1)

Fc(s) =
∑
t

γt (c)Yt (A.2)

Sc(s) = diag
(∑

t
γt (c)YtY ∗

t
)

(A.3)

where, for each time t , γt (c) is the posterior probability of the event that the feature
vector Yt is accounted for by the mixture component c. These posteriors are calculated
using the UBM.

The centralized first and second order Baum-Welch statistics are denoted by F̃c(s) and
S̃c(s).

F̃c(s) =
∑
t

γt (c).(Yt – mc) (A.4)

S̃c(s) = diag
(∑

t
γt (c).(Yt – mc).(Yt – mc)∗

)
(A.5)

where, mc is the subvector of m corresponding to the mixture component c.
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ALIZE 3.0

The ALIZE Toolkit [22] provides a wide variety of methods for complete i-vector ex-
traction and processing. It has a full set of methods for normalization and scoring. It
is written in C++ and provides implementations for JFA. It is provided under LGPL
licence. ALIZE consists of two major packages:

• ALIZE package: It is a low level library that consists of all the methods related to
Gaussian mixtures.

• LIA_RAL package: It is a high level package aimed at providing programs related
to Automatic Speaker Detection. It consists of the following parts:

– LIA_SpkTools: It is a high level library containing finished tools provided by
LIA_RAL.

– LIA_SpkDet: It consists of tools required for any task related to biometric
authentication system.

– LIA_Utils: It contains tools required in changing ALIZE related formats like
GMM models, any parameters, etc.

– LIA_SpkSeg: It is a recent tool added to ALIZE toolkit which is to be used
for Speaker Diarization.

ALIZE is one of the most complete set of libraries that are required to develop a speech
recognition application. Other than GMM-UBM model, this toolkit also consists of im-
plementation for Joint Factor Analysis and i-vectors. The wide range of scoring methods
inbuilt in the system are also sufficient for most practical systems. Though ALIZE pro-
vides nearly all the methods required for performing any kind of speech recognition, it
is difficult to start with due to insufficient documentation provided with the toolkit.

The contents of this appendix can be found on ALIZE wiki1. It is included here for the
purpose of completeness.

B.1 Binaries

1. Feature Extraction: It is done using sfbcep utility. It can extract 19 MFCC +
log-energy coefficient + first and second order delta coefficients.

1http://mistral.univ-avignon.fr/mediawiki/index.php/
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2. File Conversion: NormFeat and EnergyDetector used at this step to perform the
initial preprocessing. It include windowing, silence removal (Voice Activity Detec-
tion), feature normalization, etc.

3. Technique Specific Tweaking:

(a) GMM-UBM: Use ComputeTest and ComputeNorm utilities to do scoring
and compute the norms respectively. For changing the Norm type, options
should be changed in configuration file as shown in Table B.1. targetIdList,
ndxFileName and outputFileName will be changed in configuration file used
with ComputeTest according to the normType chosen.
Usage: ComputeTest –-config <ComputeTest_configFileName>

ComputeNorm –-config <ComputeNorm_configFileName>

Table B.1: Options in ALIZE for changing Norm Type with ComputeNorm

Norm Type Value of normType Other Variables to change

Z-norm znorm znormNistFile, outputFileBaseName
T-norm tnorm tnormNistFile, outputFileBaseName
ZT-norm ztnorm znormNistFile, tnormNistFile,

ztnormNistFile, outputFileBaseName

(b) JFA: Stepwise flow for performing Joint Factor Analysis is given in Table B.2.
The command format to be followed when calling binaries will be:
<binary_name> –-config <configFileName>

Table B.2: Steps for performing JFA using ALIZE and corresponding binaries

Step Binary Name Function

1 TrainWorld Train UBM by EM algorithm
2 EigenVoice Estimate the EigenVoice Matrix
3 ComputeJFAStats,

EigenChannel
Compute sufficient statistics for eigenchannel
training

4 EstimateDMatrix Compute sufficient statistics for DMatrix Training
5 TrainTarget Train Speaker Dependent GMMs
6 ComputeTest Compute Likelihood (Scoring)

(c) i-vectors: Stepwise flow for using i-vectors with ALIZE is given in Table B.3.
The command format to be followed when calling binaries will be:
<binary_name> –-config <configFileName>

Use of IvTest is explained in the section B.2 owing to large set of options
available to use with it.

B.2 Scoring Methods

There are multiple scoring methods available to be used with i-vectors in ALIZE toolkit.
To choose the proper scoring technique value of the variable scoring needs to be changed
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Table B.3: Steps for using i-vectors with ALIZE and corresponding binaries

Step Binary Name Function

1 TrainWorld Train UBM by EM algorithm
2 TotalVariability Train TotalVariability matrix
3 IvExtractor Extract i-vectors
4 IvTest Scoring

in the configuration file. The possible values are listed in Table B.4. Depending on the
value of scoring, some more options needs to be configured in the same configuration
file. The options that can be configured with each type of scoring are listed in different
tables whose references are also provided in Table B.4.

Table B.4: Options in ALIZE for changing Scoring Technique with IvTest

Scoring Technique Value of scoring Other Variables to change

Cosine Scoring + WCCN cosine Refer Table B.5
Mahanalobis Scoring + EFR mahanalobis Refer Table B.6
2-Covariance 2cov Refer Table B.7
PLDA plda Refer Table B.8

Table B.5: Options in ALIZE for Cosine Similarity Scoring

Option Value Usage

wccn boolean apply Within Class Covariance Normalization
ivNormIterationNb integer number of iteration for normalization
loadWccnMatrix true / false if false then compute the WCCN matrix, if

true, load it from file
wccnMatrix string name of the WCCN matrix file to load or save.

Default value is WCCN
backgroundNdxFilename string list of files and class definitions for WCCN or

LDA matrix computation

Table B.6: Options in ALIZE for Mahanalobis Scoring

Option Value Usage

backgroundNdxFilename filename list of files and class definitions for Maha-
lanobis matrix computation

mahalanobisMatrix filename filename of the Mahalanobis matrix to load or
save

loadMahalanobisMatrix true / false load the matrix from file, if false the Maha-
lanobis matrix is estimated first



40 Appendix B ALIZE 3.0

Table B.7: Options in ALIZE for Two-Covariance model

Option Value Usage

load2covMatrix true / false load matrices from files, if false the meta-
parameters of the two-covariance model are
estimated first

backgroundNdxFilename filename list of files and class definitions for two-
covariance matrices computation

TwoCovFilename filename root of the W and B matrices used to de-
fine the two co-variance model. Filenames are
obtained by adding "_W" and "_B" to the
"TwoCovFilename" string. Default values is
"2Cov"

Table B.8: Options in ALIZE for PLDA

Option Value Usage

pldaLoadModel true / false load the PLDA model from files, if false the
meta-parameters are estimated first

pldaLoadInitMatrices true / false in case the PLDA model is estimated, load
matrices for initialization. If false, the ma-
trices are initialized randomly

iVectSize integer dimension of the i-vector for matrix initial-
ization

pldaEigenVoiceNumber integer rank of the EigenVoice matrix
pldaEigenChannelNumber integer rank of the EigenChannel matrix
backgroundNdxFilename filename list of files and class definitions for PLDA

model computation
pldaNbIt integer number of iterations to perform for PLDA

parameters estimation
pldaScoring native / en-

rollMean
type of score to compute (see dedicated sec-
tion for more information)

pldaEigenVoiceMatrix filename EigenVoice matrix to load or save
pldaEigenChannelMatrix filename EigenChannel matrix to load or save
pldaSigmaMatrix filename Noise covariance matrix to load or save
pldaMeanVec filename mean vector of the development set
pldaMinDivMean filename mean vector re-estimated during PLDA

model training
pldaEigenVoiceMatrixInit filename EigenVoice matrix to load for initialization
pldaEigenChannelMatrixInit filename eigenChannel matrix to load for initializa-

tion
pldaSigmaMatrixInit filename noise covariance matrix to load for initial-

ization
pldaMeanVecInit filename mean vector to load for initialization
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