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Introduction
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Introduction

Feature Extraction

Desired characteristics of features

They should:

be less susceptible to environmental noise

occur frequently and naturally in normal speech

not be affected by health of the speaker

be easily measurable

be difficult to copy by impostors
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Speech Recognition Techniques
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Speech Recognition Techniques

Why GMMs?

They can model a large class of speech characteristics.

Even for arbitrary component densities the model gives a good
approximation.

Capable of modeling the hidden characteristics of speech data (vocal
cords, voice tract information, etc.)
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Speech Recognition Techniques

Universal Background Models

Trained using speech from many speakers.

Represents a general speaker independent model.

Expected to contain the features of any utterance on which system is
tested.

Background model for GMM-UBM Framework.
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Speech Recognition Techniques

The GMM-UBM Framework - MAP Adaptation

Maximum A-Posteriori (MAP) training.

Target model is trained by adapting UBM.
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Speech Recognition Techniques

Joint Factor Analysis

Assume speaker and channel supervectors Info are distributed normally
and are statistically independent.

M = s + c (1)

where,

M is speaker and channel dependent supervector;

s is speaker dependent supervector; Info

c is channel dependent supervector. Info
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Speech Recognition Techniques

Joint Factor Analysis
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Speech Recognition Techniques

Joint Factor Analysis

Assumed that the channel factors will only model the channel effects.

Dehak [1] observed that the channel dependent supervector also
models the speaker features.

Front End Factor Analysis proposed to address this issue.
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Speech Recognition Techniques

Front End Factor Analysis

New low dimensional was introduced to account for both the
variabilities.

Called Total Variability Space T .

M is given by:
M = m + Tx (2)

where,

m is the UBM supervector (speaker and channel independent
supervector);

x is a normally distributed random vector in this space; and

T is a low ranked rectangular matrix.
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Speech Recognition Techniques

Front End Factor Analysis - Why Preferred?

Low Computation Cost

Channel compensation is done in total factor space

The new vectors here are known as identity vectors or i-vectors.

the dimensionality of i-vectors is lower as compared to GMM
supervectors

Computation cost is much less as compared to JFA.

Unsupervised Learning

Supervised training is not needed in this model unlike JFA and
GMM-UBM.

Creates clusters on its own.
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Resource Measurement Techniques

Resources Managed

Power or Energy

Memory

Secondary Space
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Resource Measurement Techniques

Power Measurement

Used Energy Measurement Library (EML) [2] to measure the power
requirements.

Acts as a middleware between code for measuring power consumption
and hardware based measurement tools.

Currently available for a limited number of hardware.
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Resource Measurement Techniques

EML - Device Support

The power measurement support provided by EML is for three kinds of
devices currently:

1 Intel CPUs:
1 Intel CPUs Sandy Bridge and later: Read via Intel RAPL MSR

interface for the Intel Xeon family.
2 Intel Xeon Phi: Read via Intel MPSS 3.x (Many Platform Software

Stack)

2 Nvidia Fermi and Kepler cards: Read via NVML (Nvidia
Measurement Library).

3 Metered Power Distribution Units (PDU)
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Resource Measurement Techniques

EML - Methodology

Supports four basic steps:

Broadcasting data.
Division of work.
Actual Computation.
Collecting the results.

Power calculated for each step separately.
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Resource Measurement Techniques

Memory and Space Measurements

Memory

Calculated the resident set size (RSS) portion of the memory. Info

Used pmap utility available in UNIX based OSs. Info

Extract RSS value from all the maps in memory map of process.

Sum them to get the total RSS at that instant.

Total RSS value is calculated at fixed intervals.

Secondary Space

Calculated the amount of space occupied by the executables on the
secondary disk.

ls command was used for this purpose.
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Experiments & Results

The MIT Mobile Device Speaker Verification Corpus [3]

Recordings were done using microphones and internal headsets

Contains inter-session variability

Text: Names and Ice cream flavors

5,184 recordings for enrolled users over 2 sessions

54 recordings per session per speaker

Recordings

Enrollment: 48 speakers - 26 male, 22 female

Impostor : 40 speakers - 23 male, 17 female
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Experiments & Results

Platform Used

1 x Intel R© Xeon R© CPU E5530 @ 2.40GHz

16 Cores

48 MB L3 Cache

32 GB RAM

gcc 4.1.2

Intel R© MSR RAPL interface

Intel R© MPSS 3.4.2

Pulkit Verma and Pradip K. Das (IIT-G) ICSC-2016 26 December 2016 25 / 35



Experiments & Results

Results

Table: Resource consumption for GMM-UBM, JFA and i-vector approaches for
speaker recognition

Approach Memory Consumption (MB) Energy Space Time
Average Maximum (W.h) (KB) (sec)

GMM-UBM 1291.5 1310.0 0.3648 1013 8.65
JFA 1292.0 1488.0 0.3641 1034 6.45
i-vectors 1106.0 1284.0 0.3472 3369 2.95
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Experiments & Results

Results
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Figure: Memory consumption for GMM-UBM, JFA and i-vector approaches for
speaker recognition
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Experiments & Results

Results Analysis

i-vector approach performs significantly better in terms of speed

Power consumption of all 3 approaches is comparable

i-vectors are slightly optimal in terms of memory consumption

Large code-base of i-vectors uses the maximum space
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Conclusion

Conclusion

Comparison of the current state of the art techniques in terms of their
resource utilization targeted towards speaker recognition is conducted.

Experiments were performed on a standard corpus collected using
mobile devices in a noisy environment.

i-vector approach is more efficient in terms of memory usage and
power consumption.
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Conclusion

Future Work

Current work only analyzes the resource usage on laptops and
desktops.

Performance on real time data.

Support for mobile devices like like Android
TM

, Windows R© Phone, etc.
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Conclusion
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Appendix

Gaussian Mixture Models Back

A Gaussian mixture model [4] is a weighted sum of M component
Gaussian densities as given by the equation,

p(x |λ) =
M∑
i=1

wi g(x |µi ,Σi ) (3)

where,

x is a D-dimensional continuous-valued data vector (i.e. measurement
or features);

wi , i =1, ...,M, are the mixture weights; and

g(x |µi ,Σi ), i = 1, ...,M, are the component Gaussian densities.
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Appendix

Gaussian Mixture Models Back

The complete Gaussian mixture model is parameterized by three
parameters:

Mean vectors,

Covariance matrices, and

Mixture weights from all component densities.

These parameters are collectively represented by the notation,

λ = {wi , µi ,Σi}, i =1, ...,M (4)
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Appendix

How are GMMs used? Back

GMMs are used to grab the distribution of MFCCs in the feature.

Assumed that given these feature vectors u = y1 , y2 , y3 , ...yL are
independent of each other.

Probability of a given utterance u given the model λ is simply the
product of each L frames.

Since L could be large and probabilities are less than or equal to 1,
such a large product may lead to underflow.
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Appendix

GMMs - Log likelihood Back

The complete Gaussian mixture model is parameterized by three
parameters:

To use a GMM, we need to do two things
Compute the likelihood of a sequence of features given a GMM
Estimate the parameters of a GMM given a set of feature vectors

If we assume independence between feature vectors in a sequence,
then we can compute the likelihood as

p(x1, ..., xN |λ) =
N∏

n=1

p(xn|λ) (5)

In the form of log likelihood,

log p(x1, ..., xN |λ) =
N∑

n=1

log p(xn|λ) =
N∏

n=1

( M∑
i=1

wi g(x |µi ,Σi )
)

(6)
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Appendix

GMMs - Log likelihood Back

GMM parameters are estimated by maximizing the likelihood of on a set of
training vectors

λ∗ = arg max
λ

N∑
n=1

log p(xn|λ) (7)
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Appendix

Supervectors Back

By stacking vectors and matrices, we can work directly with vector-matrix
manipulations
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Appendix

JFA- Speaker Factors Back

s = m + Vy + Dz (8)

where,

s is speaker dependent supervector;

m is CF × 1 speaker and channel independent supervector;

V is eigenvoice matrix (rectangular matrix of low rank);

D is CF × CF residual diagonal matrix;

y is a vector representing speaker factors;

z is a normally distributed CF dimensional random vector representing
speaker specific residual factors.
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Appendix

JFA- Channel Factors Back

c = Ux (9)

where,

c is channel dependent supervector;

U is eigenchannel matrix (matrix of low rank);

x is a normally distributed random vector representing channel factors.

Pulkit Verma and Pradip K. Das (IIT-G) ICSC-2016 26 December 2016 9 / 11



Appendix

Resident Set Size Back

Resident set size (RSS) is the portion of memory occupied by a process
that is held in main memory (RAM). The rest of the occupied memory
exists in the swap space or file system, either because some parts of the
occupied memory were paged out, or because some parts of the executable
were never loaded.
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Appendix

pmap Back

pmap gives the following memory information related to each map of
memory map of a process:

1 Start address of the map.

2 Map size in kilobytes.

3 Resident Set Size in kilobytes.

4 Dirty pages (both shared and private) in kilobytes.

5 Read, write, execute, shared and private (copy on write) permission
on map

6 Mapping type. It can be either (1) a file name; (2) [ anon ] for
allocated memory; or (3) [ stack ] for program stack.

7 Offset of map into the file

8 Device name
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