IC3I 2014

Improving Services using Mobile Agents-based IoT in a Smart City

Pulkit Verma, Mayank Gupta,

Tuhin Bhattacharya, Pradip K. Das

Robotics Lab

Indian Institute of Technology Guwahati

Outline

• Introduction

- Proposed Approach
- Experiments
- Results
- Conclusion

Introduction

- Today's Mobile Devices:
 - Powerful Processors
 - Huge Storage Capacities
 - Always connected to the Internet
- How to tap this power?
 - Use them together
 - Make each device a part of bigger network.
 - Provide services on the fly

Smart City

- Millions of smart devices
- 24 x 7 Internet connectivity
- Needs to have better basic services

How?

• Internet of Things

Basic Services in a Smart City

- Medical
 - Ambulances
 - Hospitals
- Law and Order
 Police Stations
- Gas Stations
- ATMs

...and many more

Problem Definition

- Improving the services
- Use Internet of Things
- A solution that is
 - Distributed
 - Robust
 - Scalable

Possible Solution

Mobile Agents based Framework

Mobile Agents

- Autonomous piece of computer programs
- Can migrate anywhere in a network
- Can make decisions locally
- Asynchronous and Distributed
- Encompass features of static agents

Outline

- Introduction
- Proposed Approach
- Experiments
- Results
- Conclusion

- General purpose framework
- Provides services in a distributed network through the devices connected to the network
- The client application sends a request, which contains a request-type along with other details like GPS location

- The client knows the addresses of all the service providers present in the city
- This data is dynamic
- The client's request goes to one of the service providers, irrespective of the request type

- Additional information like image, audio clip, etc. may be needed as well
- Problem: Large Size, unreliable network
- Solution:
 - The text message should go first
 - Multimedia message sent next as a payload

- Maintain a key to inform the server that a particular image or sound clip belongs to a previously routed Type 1 request
- Key can be a combination of the client id, GPS location and request timestamp

Outline

- Introduction
- Proposed Approach
- Experiments
- Results
- Conclusion

- Used *LPA Prolog* and *Typhon* A Mobile Agents Framework
- Several instances of Prolog running, denoting service providers
- 4 types of service providers used:
 - Hospital Transportation
 - Police Station Fire
- Fire Brigade

Experimentation

- When Client requests for a service:
 - Type of request, location (GPS) added to payload of agent
 - A service provider chosen at random
 - Request sent

- When service provider receives a request:
 - Type of request is checked.
 - If "Type 1", request forwarded to correct service provider with type changed to "Type 2"
 - If "Type 2", service is provided to client.

- Whenever a message is sent or received, the timestamp also gets displayed
- <u>Response Time</u>:

Response = Ack2 received - Type 1 request Time by client sent by client

- Along with a text-based input, we have also used a speech-based interface
- Developed using HTK, which is a standard toolkit for speech processing tasks
- Speech subsystem is used only to collect the input from the user
- Its accuracy does not influence the performance of the proposed architecture

Outline

- Introduction
- Proposed Approach
- Experiments
- Results
- Conclusion

No. of Clients	Service Time (milliseconds)			
	Minimum	Maximum	Average	
1	235	235	235	
5	262	469	388.2	
10	423	460	446.4	
20	302	662	492.1	
40	334	2089	716.5	
60	437	2330	952.2	
85	295	25699	1442.8	

TABLE 1: VARIATION IN SERVICE TIMES TAKEN FOR DIFFERENT NUMBER OF CLIENTS USING 10 SERVICE PROVIDERS

Figure 1: Graph for number of clients vs. average service time

• Service time increases almost linearly with increase in the number of clients

No. of Service	Service Time (milliseconds)		
Providers	Minimum	Maximum	Average
1	517	1696	1008.6
5	516	2985	1332.2
10	585	3115	1389.9
15	577	1953	976.6
20	279	2076	1049.4

TABLE 2: VARIATION IN SERVICE TIMES TAKEN FOR DIFFERENT NUMBER OF SERVICE PROVIDERS USING 60 CLIENTS

Figure 2: Graph for number of service providers vs. average service time

- Service time decreases when the number of service providers is increased
- As the service providers increase in number, the load tends be distributed across more nodes
- For single service provider there is no need to route the packets anywhere else

Outline

- Introduction
- Proposed Approach
- Experiments
- Results
- Conclusion

Conclusion

- Proposed a framework for IoT which uses mobile agents for providing services
 - Better service time for requests
 - Fault Tolerant / Robust
 - Scalable
 - Distributed and Decentralized

Future Work

- Can be extended for controlling devices remotely.
- If multiple requests are received from a location, they may be for the same incident or different ones.
- Real-time services like traffic updates can also be implemented using a slightly complex version of this design.

References

- 1. L. Atzori, A. Iera, G. Morabito, 2010. The Internet of Things: A survey. Computer Networks. 54(15), 2787–2805.
- W.W. Godfrey, S.S. Jha and S.B. Nair, On a Mobile Agent Framework for an Internet of Things. Communication Systems and Network Technologies (CSNT), 2013 International Conference on. 345-350.
- 3. L. Jarvenpaa, M Lintinen, A.L. Mattila, T. Mikkonen, K. Systa and J.P. Voutilainen, 2013. Mobile agents for the Internet of Things. System Theory, Control and Computing (ICSTCC), 2013 17th International Conference. 763-767.
- 4. J. Matani and S.B. Nair, 2011. Typhon A Mobile Agents Framework for Real World Emulation in Prolog. Multi-disciplinary Trends in Artificial Intelligence. 7080, 261-273.
- P. Neirotti, A. D. Marco, A. C. Cagliano, G. Mangano, and F. Scorrano, 2014. Current trends in Smart City initiatives: Some stylised facts. Cities. 38(0), 25-36.
- 6. S. Young, J. Jansen, J. Odell, D. Ollason and P. Woodland, The HTK Book. Cambridge Univ., 1996.

Thank You

Robotics Lab.

Dept. of Computer Science & Engg. Indian Institute of Technology Guwahati Guwahati – 781039

Assam INDIA

Pulkit Verma

Email: v.pulkit@iitg.ernet.inHome Page: pulkitverma25.github.ioRobotics Lab: www.iitg.ernet.in/cse/robotics