

Learning Generalized Models by Interrogating Black-Box Autonomous Agents

Pulkit Verma and Siddharth Srivastava Arizona State University, Tempe, AZ, USA

Introduction

Example of Agent Interrogation

Can a non-expert determine if an AI agent is reliable/safe for a task?

Plan Outcome Query: Asks the outcome of a plan.

Query: Initial state, plan. **Response**: Length of successful execution, final state.

> What do you think will happen if you execute the plan π : (pickup(b1), pickup(b2)) starting in an initial state *s_I*: (ontable(b1) ^ handempty)?

R Model estimated?

Let's keep asking queries till the model is fully estimated

- Objective: Estimate an understandable model of a non-stationary black-box agent by interrogating it.
- Key technical challenge:
- Which sequence of questions to ask?

Abstraction in Space of Models

(:action pickup :parameters (?ob) :precondition (and (handempty) $(+/-/\emptyset)$ (ontable ?ob)) :effect (and (not (handempty)) (not (ontable ?ob)))

abstraction

Abstracted model

> This predicate can appear in three forms:

> > positive

negative

absent

Concrete

model

I can execute only the first step, and the final state after executing one step was s_F :(-ontable(b1) ^ -handempty ^ holding(b1)).

Key Algorithmic Principle

Key feature of the algorithm

Each time we prune an abstracted model, we prune a very large number of models at the most concrete node.

(:action pickup :parameters (?ob) :precondition (and $(+/-/\emptyset)$ (handempty) n_1 $(+/-/\emptyset)$ (ontable ?ob)) n_2 :effect (and

I think it needs to keep its hand empty before pickup

Results

- Randomly generate an agent and environment from the IPC benchmark suite.
- Algorithm estimates this agent's model.

Theorem: The algorithm will always terminate and return a set of models, each of which are functionally equivalent to agent's model.

Algorithm

- Start with the most abstracted node in lattice. Pick abstraction candidates in some order.
- For each candidate, generate three models and for each pair of models:
 - Generate a distinguishing query Q and pose it to the agent.
 - Get the response R from the agent.
 - Prune out the incorrect variants of candidate models.

Estimated Model

Domain	$ \mathbb{P} $	A	Q naive	Q	Time/ Q (sec)
gripper	5	3	15×2^{5}	37	0.14
blocks-world	9	4	36 × 2 ⁹	92	1.73
elevator	10	4	40×2^{10}	109	5.91
logistics	11	6	66 × 2 ¹¹	98	11.62
parking	18	4	72×2^{18}	173	12.01
satellite	17	5	85 × 2 ¹⁷	127	19.53
openstacks	10	12	120×2^{10}	203	11.28

Number of queries generated in our approach vs naïve baseline. Results are averages of 10 random runs.

Salient Features

- Needs no prior knowledge of the agent model.
- Requires an agent to have only rudimentary query answering capabilities.

(not (handempty))

• Queries can be answered by the agent using a

simulator.

Works for non-stationary environments.

This work was supported in part by the NSF under grants IIS 1844325 and IIS 1909370

