

abstraction

 negative absent (:action load_truck :parameters (?package ?truck ?location) :precondition (and (at ?truck ?location) Concrete model (at ?package ?location)) :effect (and (not (at ?package ?location)) (in ?package ?truck)))

Algorithm

- Start with the most abstracted node in lattice.
- Pick abstraction candidates in some order.
- For each candidate, generate three models and for each pair of models:
- Generate a distinguishing query Q and pose it to the agent.
- Get the response R from the agent.
- Prune out the incorrect variants of candidate models.
- Repeat steps 3-6 till the model is fully estimated.
- Return the final set of model(s).

Learning Interpretable Models for Black-Box Agents Pulkit Verma and Siddharth Srivastava, Arizona State University, Tempe, AZ, USA

Example of Agent Interrogation

Plan Outcome Query: Asks the outcome of a plan.

Query: Initial state, plan. **Response**: Length of successful execution, final state.

can appear in three forms: positive

Key Algorithmic Principle

Key feature of the algorithm time we prune an Each abstracted model, we prune a very large number of models at the most concrete node.

What do you think will happen if you execute the plan π : (load_truck (p1, t1), drive (t1, Paris, Pisa)) starting in an initial state s_I: (at (t1, Paris) ^ at (p1, Paris))?

can execute only the first step, and the final state after executing one step was *s_F*:(¬at (p1, Paris) ^ in (t1, p1) ^ at(t1, Paris))

(:action load truck								
` :parameters (?package ?truck ?location)								
:precondition (and (+/-/Ø) (at ?truck ?location)	n_1							
(+/-/Ø) (in ?package ?truck)	n_2							
(+/-/Ø) (at ?package ?location))	n_3							
:effect (and (+/-/Ø) (at ?package ?location)	n_4							
(+/-/Ø) (at ?truck ?location)	n_5							
(+/-/Ø) (in ?package ?truck)))	n_6							
 Model estimate before querying 								
Estimated Model(s)								
after querying								
(:action load_truck								
:parameters (?package ?truck ?location)								
:precondition (and (at ?truck ?location)								
(-/Ø) (in ?package ?truck)								
(at ?package ?location))								
:effect (and (not (at ?package ?location))								
(in 2nockore 2truck (Incation)								
(in spackage struck)))								

Results

- Randomly generate an agent and environment from the IPC benchmark suite.
- Algorithm learns this agent's model.

Domain	$ \mathbb{P} $		Q naive	$ \mathcal{M}_{equiv} $	$ \mathcal{M} $	 2 	Time/ Q (sec)
gripper	5	3	15×2^{5}	1	1	37	0.14
blocks-world	9	4	36 × 2 ⁹	1	1	92	1.73
elevator	10	4	40×2^{10}	64	1	109	5.91
logistics	11	6	66×2^{11}	64	1	98	11.62
parking	18	4	72 × 2 ¹⁸	32	1	173	12.01
satellite	17	5	85 × 2 ¹⁷	4096	1	127	19.53

Number of queries (|Q|) and number of models ($|\mathcal{M}|$) generated in our approach vs naïve baseline. Results are averages of 10 random runs.

Salient Features

- capabilities.

This work was supported in part by the NSF under grants IIS 1844325 and IIS 1909370

Theorem: The algorithm will always terminate and return a set of models, each of which are functionally equivalent to agent's model.

• Needs no prior knowledge of the agent model. • Requires an agent to have only rudimentary query answering

• Queries can be answered by the agent using a simulator. • Works for non-stationary environments.

